Multicolored matchings in hypergraphs
نویسنده
چکیده
For a collection of (not necessarily distinct) matchingsM = (M1,M2, . . . ,Mq) in a hypergraph, where each matching is of size t, a matching M of size t contained in the union ∪i=1Mi is called a rainbow matching if there is an injective mapping from M to M assigning to each edge e of M a matching Mi ∈M containing e. Let f(r, t) denote the maximum k for which there exists a collection of k matchings, each of size t, in some r-partite r-uniform hypergraph, such that there is no rainbow matching of size t. Aharoni and Berger showed that f(r, t) ≥ 2r−1(t − 1), proved that equality holds for r = 2 as well as for t = 2 and conjectured that equality holds for all r, t. We show that in fact f(r, t) is much bigger for most values of r and t, establish an upper bound and point out a relation between the problem of estimating f(r, t) and several results in additive number theory, which provides new insights on some such results.
منابع مشابه
Mono-multi bipartite Ramsey numbers, designs, and matrices
Eroh and Oellerman defined BRR(G1, G2) as the smallest N such that any edge coloring of the complete bipartite graph KN,N contains either a monochromatic G1 or a multicolored G2. We restate the problem of determining BRR(K1,λ,Kr,s) in matrix form and prove estimates and exact values for several choices of the parameters. Our general bound uses Füredi’s result on fractional matchings of uniform ...
متن کاملMatchings and Tilings in Hypergraphs
We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...
متن کاملExact Minimum Degree Thresholds for Perfect Matchings in Uniform Hypergraphs Iii
We determine the exact minimum l-degree threshold for perfect matchings in k-uniform hypergraphs when the corresponding threshold for perfect fractional matchings is significantly less than 1 2 ( n k−l ) . This extends our previous results [18, 19] that determine the minimum l-degree thresholds for perfect matchings in k-uniform hypergraphs for all l ≥ k/2 and provides two new (exact) threshold...
متن کاملA Note on Perfect Matchings in Uniform Hypergraphs
We determine the exact minimum `-degree threshold for perfect matchings in kuniform hypergraphs when the corresponding threshold for perfect fractional matchings is significantly less than 12 ( n k−` ) . This extends our previous results that determine the minimum `-degree thresholds for perfect matchings in k-uniform hypergraphs for all ` > k/2 and provides two new (exact) thresholds: (k, `) =...
متن کاملApproximate Counting of Matchings in Sparse Hypergraphs
In this paper we give a fully polynomial randomized approximation scheme (FPRAS) for the number of all matchings in hypergraphs belonging to a class of sparse, uniform hypergraphs. Our method is based on a generalization of the canonical path method to the case of uniform hypergraphs.
متن کامل